
Technische Universität München
Institut für Informatik

D-85748 Garching, Germany

Towards a Theory of Architectural Contracts:

Schemes and Patterns

of

Assumption/Promise Based System Specification

Manfred Broy

Technische Universität München
Institut für Informatik

D-85748 Garching, Germany

Contracts and Architectures

Manfred Broy 3Contracts, Marktoberdorf Summer School, August 2010

R

From interaction assertions to contracts

• Let R(x, y) be an assertion that characterizes the
interaction between system S and its environment E,
called interaction assertion.

• R provides an observation/specification of the traffic
between E and S

• Can we derive of a contract for S from assertion R(x, y)
that captures the obligations of system S w.r.t. R?

Environment
E

System
S

x

y

Manfred Broy 4Contracts, Marktoberdorf Summer School, August 2010

Exceptional cases

• It is clear that we cannot expect to get a reasonable
contract from R(x, y) in every case.

• A simple example would be R(x, y) = false.

Manfred Broy 5Contracts, Marktoberdorf Summer School, August 2010

Separation

• Given the healthiness condition for the interface assertion

x, y: R(x, y)

we can do a separation of R into an assumption and a promise (for
the safety properties in R) as follows.

• We specify the responsibilities of the system S that accepts the input
history x and issues and output history y such that assertion

R(x, y)

holds.

• We are looking for assertions asu(x, y) and pro(x, y) such that

asu(x, y) pro(x, y) R(x, y)

and

assumption asu(x, y)

promise pro(x, y)

is a healthy assumption promise specification.

• If R(x, y) is strongly causal in x and fully realizable, then asu(x, y)
true is a valid choice.

Manfred Broy 6Contracts, Marktoberdorf Summer School, August 2010

Separation

• If

x: y: R(x, y)

does not hold, then we need to construct an assumption
asu(x, y) and a promise pro(x, y) such that

(1) asu(x, y) is causal in y and realizable

(2) asu(x, y) pro(x, y) is strongly causal in x and
realizable.

and

asu(x, y) pro(x, y) R(x, y)

Manfred Broy 7Contracts, Marktoberdorf Summer School, August 2010

Example. From interaction to interface assertions

• Given the specification

R(x, y) (x y t: (#y t)+b #x t #x t #y t)

where x and y are streams of data and b is a given number and

x y specifies that x and y carry the same stream of messages
(eliminating empty slots “-”)

• We choose the assumption

asu(x, y) t: (#y t)+b #x t

• asu(x, y) is causal in y and realizable.

• We choose the promise

pro(x, y) (x y t: #x t #y t)

• Assertion pro(x, y) is strongly causal and fully realizable.

• We get

pro(x, y) asu(x, y) R(x, y)

Manfred Broy 8Contracts, Marktoberdorf Summer School, August 2010

Example. Non-realizable Specification

• Consider a system with input channel x and output
channel y both carrying boolean messages:

R(x, y) = [(true#x < true#y =)

(true#x = true#y <)]

• All the involved assertions are liveness properties. We get

x: y: R(x, y)

• However, there does not exist a causal function f with

x: R(x, f(x))

• Otherwise, there would exist a strongly causal function f
with a fixpoint y = f(y) such that R(x, y) holds which
delivers a contradiction.

• The example suggests that non-realizable specifications
include liveness properties that cannot be realized.

Technische Universität München
Institut für Informatik

D-85748 Garching, Germany

Assumptions in Architectural Modelling

Manfred Broy 10Contracts, Marktoberdorf Summer School, August 2010

Example: Simple Watch Guard in a Car

Manfred Broy 11Contracts, Marktoberdorf Summer School, August 2010

Glass Box Specification of a Car´s Architecture

Manfred Broy 12Contracts, Marktoberdorf Summer School, August 2010

Example: how A/P-specifications can be formulated

• The specification

t: doors_closed(t) act_speed(t) = 0

can only be guaranteed if the two inner components work together.
This requires

t: ready(t) act_speed(t) = 0

• Then the system specification holds if

t: doors_closed(t) ready(t)

• This is logically equivalent to the A/P-specification for the WatchDog

assumption: t: ready(t) act_speed(t) = 0

promise: t: doors_closed(t) act_speed(t) = 0

• In other words,

◊ the overall system specification can be guaranteed by the watchdog

◊ only if the assumption about the behaviour of the component motor
holds.

Manfred Broy 13Contracts, Marktoberdorf Summer School, August 2010

Simple Watch Guard in a Car (Continued)

Manfred Broy 14Contracts, Marktoberdorf Summer School, August 2010

Assumption/Promise to define Architectural Design Patterns

• A/P-specification

assumption: t: ready(t) act_speed(t) = 0

promise: t: doors_closed(t) act_speed(t) = 0

is logically guaranteed by the simple specification

t: doors_closed(t) ready(t)

• This assertion no longer speaks about the specification of
the environment, but is a pure interface specification.

• The example shows the simplification of an A/P-
specification to a plain interface assertion.

Technische Universität München
Institut für Informatik

D-85748 Garching, Germany

Designing Architectures

Manfred Broy 16Contracts, Marktoberdorf Summer School, August 2010

"Alternating-Bit"-Protocol

ABP

Sender Receiver

Medium1

Medium2

x :Data y : Data

z1 : Data Bool

z4 : Bool

z2 Data Bool

z3 : Bool

Manfred Broy 17Contracts, Marktoberdorf Summer School, August 2010

Alternating Bit Protocol

• We specify interface behaviour of system ABP by the
interface assertion

x y

and furthermore its architecture by the assertion

abp(x, z1, z2, z3, z4, y)

abs(z1) x

abs(z2) x

Data#y = #abs(z2)

Data#x = #abs(z3)

#abs(z3) = #abs(z4)

abs(z2) y

Manfred Broy 18Contracts, Marktoberdorf Summer School, August 2010

Auxiliary functions

• The auxiliary function abs eliminates all repeated
elements and empty slots in a stream.

• The auxiliary function abs is described by following
equations (using the auxiliary function del):

abs(- ˆz) = abs(z)

abs(e ˆz) = e ˆdel(z, e)

del(e ˆz, e) = del(z, e)

e ≠ d del(d ˆz, e) = abs(d ˆz)

del(- ˆz, e) = del(z, e)

• Now we can look for specifications of the sub-systems
that fulfil the requirements included in the architecture.

Manfred Broy 19Contracts, Marktoberdorf Summer School, August 2010

Deriving specifications for sub-interfaces

• We derive specifications for sub-interfaces as given by

{z1, z4}

• From

x, y, z2, z3: abp(x, z1, z2, z3, z4, y)

we derive

x: abs(z1) x Data#x = #abs(z4)

from which we can derive

x: #abs(z1) = #abs(z4)

This expresses a condition for the two streams on channels z1 and
z4.

• This condition does not indicate who is responsible for the liveness
property included in the specification.

• The example shows a way to design architectures by designing first
the specifications for the channel histories and then the specification
for the components.

Manfred Broy 20Contracts, Marktoberdorf Summer School, August 2010

Conclusion

• A/C specs address the logic of the architecture rather
than separated interface specifications for the
components

• From A/C specs we may derive separated interface
specifications for the components by simplified assertions

• This gives a methodology towards a modular
decomposition in architecture design

Technische Universität München
Institut für Informatik

D-85748 Garching, Germany

Outlook:
Assumption/Promise for Non-functional Reqs

Manfred Broy 22Contracts, Marktoberdorf Summer School, August 2010

Future work

• Perspectives of the systematic application of
assumption/promise patterns in system development for
non-functional system properties.

• Dealing with non-functional requirements in requirements
engineering.

Manfred Broy 23Contracts, Marktoberdorf Summer School, August 2010

Rich Contracts: Specifying Non-Functional System Properties

• Non-functional properties deal with aspects of systems that do not
address the system's behaviour.

• The formula (for all environments E):

E: Asu(E) Pro(S E)

specifies a contract Con(S) for system S.

• An example would be the weight of system S E.

• Assuming the simple rule

weight(S E) = weight(S) + weight(E)

being interested in the system specification (for given k)

weight(S E) ≤ k

• that requires a limit for the system’s weight we get the formula (with
k’ < k)

E: weight(E) ≤ k’ weight(S E) ≤ k

which is equivalent to the proposition

weight(S) ≤ k-k’

Manfred Broy 24Contracts, Marktoberdorf Summer School, August 2010

Remark on Non-functional Requirements

• It is not so obvious what it means that a property is “non-
functional”

• If weight is a monitored or a controlled variable then it is
part of the functional system properties

• We may distinguish between

◊ qualitative properties

◊ quantitative properties

Manfred Broy 25Contracts, Marktoberdorf Summer School, August 2010

Final Remarks

Rich specifications

• Probability

• Continuous time, continuous signals

• Quality by quantitative properties

◊ Performance

• Quantitative response times

• Resource consumption

◊ Reliability

◊ Functional safety

◊ Security

◊ ...

• The goal is to treat all these properties in a modular way

